4 views (last 30 days)

Show older comments

I am trying to solve a simple linear optimisation problem using the "Problem-Based Optimisation" approach. To solve the optimisation problem I use "linprog" and the "dual-simplex-algorithm".

The number of variables and constraints depends on the number of time steps T. The variable T in turn depends on the considered time period t and the duration of a single time step dt. I can solve the problem if I keep the number of time steps small enough or if I use the "Solver-Based Optimisation" approach. However, I must be able to solve the problem for a period of 24h with time steps of 15/60. This results in a number of T = 97 time steps. With this number of time steps, I recieive the following error message: "Linprog stopped because it exceeded its allocated memory". I don't understand why the "Problem-Based Optimisation" approach run out of memory for such a small problem.

Here is my code:

dt = 15/60;

t = [0:dt:24]; %Charging time 24h

T = length(t)

E_Batt = 22;

E_inital = 9;

E_min = 12;

P_max = 10;

P_min = 0;

E_1 = optimvar('E_1',T,"UpperBound",E_Batt);

P_1 = optimvar('P_1',T,"LowerBound",P_min,"UpperBound",P_max);

Charging_1 = optimproblem();

Charging_1.ObjectiveSense = 'maximize';

RowConstraints = optimconstr(T);

for n = 1:T

if n~=1

RowConstraints(n) = E_1(n-1) - E_1(n) + P_1(n)*dt == 0;

else

RowConstraints(n) = E_1(n) == E_inital;

end

end

Charging_1.Constraints.c = RowConstraints;

% show(Charging_1.Constraints.c);

objfun = sum(E_1);

Charging_1.Objective = objfun;

% show(Charging_1.Objective)

Schedule = solve(Charging_1);

Schedule.E_1

Schedule.P_1

figure(1)

plot(t,Schedule.E_1)

title('Ladezustand')

xlabel('Ladezeit [h]')

ylabel('SoC [%]')

figure(2)

bar(t,Schedule.P_1)

title('Ladeleistung')

xlabel('Ladezeit [h]')

ylabel('Leistung [kW]')

Is there any issue with my code?

Thank you

Alan Weiss
on 3 May 2021

Sorry, I do not know why the default algorithm gives this error. The 'interior-point' algorithm solves it easily.

dt = 15/60;

t = [0:dt:24]; %Charging time 24h

T = length(t)

E_Batt = 22;

E_inital = 9;

E_min = 12;

P_max = 10;

P_min = 0;

E_1 = optimvar('E_1',T,"UpperBound",E_Batt);

P_1 = optimvar('P_1',T,"LowerBound",P_min,"UpperBound",P_max);

Charging_1 = optimproblem();

Charging_1.ObjectiveSense = 'maximize';

RowConstraints = optimconstr(T);

% for n = 1:T

% if n~=1

% RowConstraints(n) = E_1(n-1) - E_1(n) + P_1(n)*dt == 0;

% else

% RowConstraints(n) = E_1(n) == E_inital;

% end

% end

n2 = 2:T;

RowConstraints(1) = E_1(1) == E_inital;

RowConstraints(n2) = E_1(n2) == E_1(n2-1) + P_1(n2)*dt;

Charging_1.Constraints.c = RowConstraints;

% show(Charging_1.Constraints.c);

options = optimoptions("linprog","Algorithm","interior-point");

objfun = sum(E_1);

Charging_1.Objective = objfun;

% show(Charging_1.Objective)

Schedule = solve(Charging_1,"Options",options);

Schedule.E_1

Schedule.P_1

figure(1)

plot(t,Schedule.E_1)

title('Ladezustand')

xlabel('Ladezeit [h]')

ylabel('SoC [%]')

figure(2)

bar(t,Schedule.P_1)

title('Ladeleistung')

xlabel('Ladezeit [h]')

ylabel('Leistung [kW]')

Alan Weiss

MATLAB mathematical toolbox documentation

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!