 #1
 41
 5
 Homework Statement:

A scientist observs the occurence of an event A as a result of some experiment. He believes that the only possible explanations for the occurence of event A are three different hypothesis, ##H_1, H_2, H_3##.
With hypothesis ##H_1##, the experiment produces A in ##10\%## of time, when repeted indefinitely. With ##H_2##, A is observed ##1\%## of time and, under ##H_3##, A is observed in ##39\%## of time.
The scientis decides that ##H_3## is the most likely explanation and that the probability that ##H_3## is true is: ##\frac{0.39}{0.1 + 0.01 + 0.39} = 0.78##
a) What considerations are being assumed as true by the scientist?
b) The probability ##0.78## admits the interpretation of relative frequencies ? Justify
c) Suppose that the experiment consists in a lab test made with a blood sample from a person randonly choosen of a population. The hypothesis ##H_i## is that the individual's blood is of type i. It is known that ##50\%## of the population has blood type ##1##. ##45\%## has blood type ##2## and the remaining part has blood type ##3##. In this conditions, find which of the hypothesis is mos likely, given that the event A was observed.
 Relevant Equations:
 ##P =\frac{ n(favorable)}{N}##, ##P(AB) = \frac{P(A \ and \ B)}{P(B)}##
For letter a), i think that he is assuming that each hypothesis is independent, and that they are mutually exclusive.
For letter b), I understand that it indeed admits the relative frequency interpretation, since the the experiment is being produced several times.
For letter c) we do the conditional probability, ##P(i  A) = \frac{P(i \ and \ A)}{P(A)}##, ##P(A) = 0.1 \cdot 0.5 + 0.01 \cdot 0.45 + 0.39 \cdot 0.05## (which does not depends on ##i##), and ##P(i \ and \ A)## is greater for ##i = 1##, ##P(1 \ and \ A) = 0.1 \cdot 0.5##, So the most likely hypothesis is ##H_1##
For letter b), I understand that it indeed admits the relative frequency interpretation, since the the experiment is being produced several times.
For letter c) we do the conditional probability, ##P(i  A) = \frac{P(i \ and \ A)}{P(A)}##, ##P(A) = 0.1 \cdot 0.5 + 0.01 \cdot 0.45 + 0.39 \cdot 0.05## (which does not depends on ##i##), and ##P(i \ and \ A)## is greater for ##i = 1##, ##P(1 \ and \ A) = 0.1 \cdot 0.5##, So the most likely hypothesis is ##H_1##
Last edited: